Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Advanced Materials Technologies ; : 1, 2023.
Article in English | Academic Search Complete | ID: covidwho-2288891

ABSTRACT

Respiration monitoring of a large population is important in containing the spread of viral respiratory infections such as the coronavirus disease 2019 (COVID‐19). Current technologies, however, lack the ability in respiration monitoring of multiple human subjects in a long‐term, robust, and low‐cost manner. Herein, wireless respiration monitoring of multiple human subjects using facemask‐integrated flexible meta‐antennas is demonstrated. The flexible meta‐antenna has an architecture of multi‐layered anisotropic hole‐array, which is optimized by theory and simulations to achieve high performances including good antenna gain, robustness against body interferences, and high air permeability favorable for facemask integration. A person's respiration patterns and respiration rates are wirelessly obtained by the meta‐antenna integrated with a temperature‐sensor‐embedded chip. Respiration monitoring of multiple subjects in long range and long term during daily activities is simultaneously demonstrated. In addition, a real‐time data processing system is introduced in which a local server, a cloud server, and an application layer are implemented for the real‐time display of respiration patterns and automatic recognition of abnormal status. The design of flexible meta‐antennas may lead to a distinct class of physiological sensors over a large population for applications in pandemic control and personalized healthcare. [ABSTRACT FROM AUTHOR] Copyright of Advanced Materials Technologies is the property of John Wiley & Sons, Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

2.
24th Electronics Packaging Technology Conference, EPTC 2022 ; : 311-314, 2022.
Article in English | Scopus | ID: covidwho-2279407

ABSTRACT

Health awareness has increased worldwide since the COVID 2019 pandemic, creating a strong demand for wearable electronics. Wearable sensors for monitoring a patient's health are prevalent to reduce medical costs and decrease in-person clinic visits. Integrating electronics into clothes is challenging because most fabrics are porous and incompatible with the existing manufacturing methods, such as screen printing. The indirect printing method was employed to fabricate electrical circuitry on a textile substrate by printing it on a heat transfer polymer (HTP) and attaching it to the target cloths by stitching or glueing. Such a fabrication process has the potential to lead the way in developing new intelligent clothes. However, the durability of the printed circuitry in this manufacturing process on a cloth is still unknown and requires investigation. Therefore, this paper's objective is to study the durability of printed circuitries on fabric by applying constant cyclic loading. The test vehicle is a printed conductive silver interdigitating circuitry on fabric. Another test vehicle on a polyethylene terephthalate (PET) substrate was fabricated for a benchmark. A constant cyclic loading at 1Hz at a 50% duty cycle was applied to the test vehicles 100,000 times. The printed circuitry was monitored by logging the voltage in an electrical voltage divider configuration while the sensor was pressed and released. The result indicates that the fabric test vehicle can still function after the 100,000 cycles of the cyclic loading test and is comparable to that on the PET substrate. The recorded voltage-to-force values of the printed sensor on the fabric drifted upward and downward up to 3% over the loading cycles. The optical microscope observation on the cyclic loading samples showed signs of shear stresses on the printed silver and electrically conductive films, which could cause the tips of the silver interdigitating fingers to shatter. The study indicates that the properly manufactured circuits on fabric can be reliable and utilized for wearable applications. © 2022 IEEE.

3.
Adv Sci (Weinh) ; 10(6): e2205960, 2023 02.
Article in English | MEDLINE | ID: covidwho-2262047

ABSTRACT

Recent advances in flexible wearable devices have boosted the remarkable development of devices for human-machine interfaces, which are of great value to emerging cybernetics, robotics, and Metaverse systems. However, the effectiveness of existing approaches is limited by the quality of sensor data and classification models with high computational costs. Here, a novel gesture recognition system with triboelectric smart wristbands and an adaptive accelerated learning (AAL) model is proposed. The sensor array is well deployed according to the wrist anatomy and retrieves hand motions from a distance, exhibiting highly sensitive and high-quality sensing capabilities beyond existing methods. Importantly, the anatomical design leads to the close correspondence between the actions of dominant muscle/tendon groups and gestures, and the resulting distinctive features in sensor signals are very valuable for differentiating gestures with data from 7 sensors. The AAL model realizes a 97.56% identification accuracy in training 21 classes with only one-third operands of the original neural network. The applications of the system are further exploited in real-time somatosensory teleoperations with a low latency of <1 s, revealing a new possibility for endowing cyber-human interactions with disruptive innovation and immersive experience.


Subject(s)
Hand , Wearable Electronic Devices , Humans , Neural Networks, Computer , Gestures
4.
Crit Rev Biotechnol ; : 1-18, 2022 Feb 13.
Article in English | MEDLINE | ID: covidwho-2286490

ABSTRACT

While the research field and industrial market of in vitro diagnosis (IVD) thrived during and post the COVID-19 pandemic, the development of isothermal nucleic acid amplification test (INAAT) based rapid diagnosis was engendered in a global wised large measure as a problem-solving exercise. This review systematically analyzed the recent advances of INAAT strategies with practical case for the real-world scenario virus detection applications. With the qualities that make INAAT systems useful for making diagnosis relevant decisions, the key performance indicators and the cost-effectiveness of enzyme-assisted methods and enzyme-free methods were compared. The modularity of nucleic acid amplification reactions that can lead to thresholding signal amplifications using INAAT reagents and their methodology design were examined, alongside the potential application with rapid test platform/device integration. Given that clinical practitioners are, by and large, unaware of many the isothermal nucleic acid test advances. This review could bridge the arcane research field of different INAAT systems and signal output modalities with end-users in clinic when choosing suitable test kits and/or methods for rapid virus detection.

5.
Electroanalysis ; 35(2):2020/01/01 00:00:00.000, 2023.
Article in English | Academic Search Complete | ID: covidwho-2229526

ABSTRACT

Wearable sensing devices have transformed the hourly analysis of events such as body signals and environmental risks into real‐time monitoring in minutes or seconds. Wearable sensors have facilitated the ability to obtain useful data by monitoring the physiological parameters and activities of an aided and a healthy individual. Wearable devices employ detectable biomarkers in the human body, such as in tears, saliva, interstitial fluid, sweat, and so on. These can deliver relevant information on human health, online activity monitoring, and therapeutic treatments. This section outlines the significance of sample types and associated biomarkers as indicators in the development and manufacturing of wearable biosensors. We have emphasized the most recent advances of wearables based on skin‐like and textile, giving attention to personalized health monitoring to record signals of motion and physiological and body fluid investigation. Furthermore, this review categorizes wearable biosensors based on the sensing mechanism, electrochemical, optical, and mechanical. Additionally, the recent wearables related to the detection of the newly havoc‐causing pandemic, COVID‐19, and the future perspective for the development of much more advanced and potent wearable biosensors have been highlighted. The final section highlights unmet difficulties and gaps in wearable sensors in personalized therapy. [ FROM AUTHOR]

6.
Journal of Applied Physics ; 133(3):1-35, 2023.
Article in English | Academic Search Complete | ID: covidwho-2212217

ABSTRACT

Droplet impact dynamics is an interfacial phenomenon that is shown everywhere in nature and is the underlying of numerous technological applications including bio-printing, tissue engineering, pharmaceuticals, fight against COVID-19 pandemic, smart biomaterials, and flexible electronics. Over the last decade, expeditious advancement of novel functional interfacial surfaces, high-speed visualization, nanoscience, nanotechnology, machine learning, and computational power, as well as the connection of flow physics with interfacial science, have contributed to enhancing the understanding of relevant complex physical phenomena. Droplet, upon impacting onto substrates, can deposit, spread, bounce, and splash. Features of droplet impact physics and surface wettability necessitate elaborate solid–liquid interactions. Given the significance of droplet impact physics for healthcare and electronics, it is recommended for the scientific community to direct research studies to profound the understanding of such complex physics. Therefore, this Review initially focuses on liquid–solid interfacial science. Second, droplet impact physics on numerous solid surfaces was discussed. Substrates with various wettability and physical features were considered: hydrophilic, hydrophobic, superhydrophobic, smooth, rough, and flexible elastic surfaces. Furthermore, numerous advancements of droplet impact on solid surfaces related to advanced technologies and challenges including printed electronics, smart biomaterials, tissue engineering, machine learning, and COVID-19 pandemic were reviewed. Finally, this Review outlines future perspectives and research directions in complex droplet impact physics. [ FROM AUTHOR]

7.
ACS Appl Mater Interfaces ; 14(50): 55402-55413, 2022 Dec 21.
Article in English | MEDLINE | ID: covidwho-2160142

ABSTRACT

Breath monitoring and pulmonary function analysis have been the prime focus of wearable smart sensors owing to the COVID-19 outbreak. Currently used lung function meters in hospitals are prone to spread the virus and can result in the transmission of the disease. Herein, we have reported the first-ever wearable patch-type strain sensor for enabling real-time lung function measurements (such as forced volume capacity (FVC) and forced expiratory volume (FEV) along with breath monitoring), which can avoid the spread of the virus. The noninvasive and highly sensitive strain sensor utilizes the synergistic effect of two-dimensional (2D) silver flakes (AgFs) and one-dimensional (1D) silver nanowires (AgNWs), where AgFs create multiple electron transmission paths and AgNWs generate percolation networks in the nanocomposite. The nanocomposite-based strain sensor possesses a high optimized conductivity of 7721 Sm-1 (and a maximum conductivity of 83,836 Sm-1), excellent stretchability (>1000%), and ultrasensitivity (GFs of 35 and 87 when stretched 0-20 and 20-50%, respectively), thus enabling reliable detection of small strains produced by the body during breathing and other motions. The sensor patching site was optimized to accurately discriminate between normal breathing, quick breathing, and deep breathing and analyze numerous pulmonary functions, including the respiratory rate, peak flow, FVC, and FEV. Finally, the observed measurements for different pulmonary functions were compared with a commercial peak flow meter and a spirometer, and a high correlation was observed, which highlights the practical feasibility of continuous respiratory monitoring and pulmonary function analysis.


Subject(s)
COVID-19 , Nanocomposites , Nanowires , Humans , Silver , Lung
8.
Sensors (Basel) ; 22(20)2022 Oct 13.
Article in English | MEDLINE | ID: covidwho-2071709

ABSTRACT

In recent years, vital signals monitoring in sports and health have been considered the research focus in the field of wearable sensing technologies. Typical signals include bioelectrical signals, biophysical signals, and biochemical signals, which have applications in the fields of athletic training, medical diagnosis and prevention, and rehabilitation. In particular, since the COVID-19 pandemic, there has been a dramatic increase in real-time interest in personal health. This has created an urgent need for flexible, wearable, portable, and real-time monitoring sensors to remotely monitor these signals in response to health management. To this end, the paper reviews recent advances in flexible wearable sensors for monitoring vital signals in sports and health. More precisely, emerging wearable devices and systems for health and exercise-related vital signals (e.g., ECG, EEG, EMG, inertia, body movements, heart rate, blood, sweat, and interstitial fluid) are reviewed first. Then, the paper creatively presents multidimensional and multimodal wearable sensors and systems. The paper also summarizes the current challenges and limitations and future directions of wearable sensors for vital typical signal detection. Through the review, the paper finds that these signals can be effectively monitored and used for health management (e.g., disease prediction) thanks to advanced manufacturing, flexible electronics, IoT, and artificial intelligence algorithms; however, wearable sensors and systems with multidimensional and multimodal are more compliant.


Subject(s)
COVID-19 , Sports , Wearable Electronic Devices , Humans , Artificial Intelligence , Pandemics , COVID-19/diagnosis , Monitoring, Physiologic/methods
9.
Nanomaterials (Basel) ; 12(18)2022 Sep 10.
Article in English | MEDLINE | ID: covidwho-2033069

ABSTRACT

Graphene achieved a peerless level among nanomaterials in terms of its application in electronic devices, owing to its fascinating and novel properties. Its large surface area and high electrical conductivity combine to create high-power batteries. In addition, because of its high optical transmittance, low sheet resistance, and the possibility of transferring it onto plastic substrates, graphene is also employed as a replacement for indium tin oxide (ITO) in making electrodes for touch screens. Moreover, it was observed that graphene enhances the performance of transparent flexible electronic modules due to its higher mobility, minimal light absorbance, and superior mechanical properties. Graphene is even considered a potential substitute for the post-Si electronics era, where a high-performance graphene-based field-effect transistor (GFET) can be fabricated to detect the lethal SARS-CoV-2. Hence, graphene incorporation in electronic devices can facilitate immense device structure/performance advancements. In the light of the aforementioned facts, this review critically debates graphene as a prime candidate for the fabrication and performance enhancement of electronic devices, and its future applicability in various potential applications.

10.
Nanomicro Lett ; 14(1): 150, 2022 Jul 22.
Article in English | MEDLINE | ID: covidwho-1956033

ABSTRACT

In the past decade, the global industry and research attentions on intelligent skin-like electronics have boosted their applications in diverse fields including human healthcare, Internet of Things, human-machine interfaces, artificial intelligence and soft robotics. Among them, flexible humidity sensors play a vital role in noncontact measurements relying on the unique property of rapid response to humidity change. This work presents an overview of recent advances in flexible humidity sensors using various active functional materials for contactless monitoring. Four categories of humidity sensors are highlighted based on resistive, capacitive, impedance-type and voltage-type working mechanisms. Furthermore, typical strategies including chemical doping, structural design and Joule heating are introduced to enhance the performance of humidity sensors. Drawing on the noncontact perception capability, human/plant healthcare management, human-machine interactions as well as integrated humidity sensor-based feedback systems are presented. The burgeoning innovations in this research field will benefit human society, especially during the COVID-19 epidemic, where cross-infection should be averted and contactless sensation is highly desired.

11.
Electroanalysis ; 2022.
Article in English | Scopus | ID: covidwho-1888678

ABSTRACT

Wearable sensing devices have transformed the hourly analysis of events such as body signals and environmental risks into real-time monitoring in minutes or seconds. Wearable sensors have facilitated the ability to obtain useful data by monitoring the physiological parameters and activities of an aided and a healthy individual. Wearable devices employ detectable biomarkers in the human body, such as in tears, saliva, interstitial fluid, sweat, and so on. These can deliver relevant information on human health, online activity monitoring, and therapeutic treatments. This section outlines the significance of sample types and associated biomarkers as indicators in the development and manufacturing of wearable biosensors. We have emphasized the most recent advances of wearables based on skin-like and textile, giving attention to personalized health monitoring to record signals of motion and physiological and body fluid investigation. Furthermore, this review categorizes wearable biosensors based on the sensing mechanism, electrochemical, optical, and mechanical. Additionally, the recent wearables related to the detection of the newly havoc-causing pandemic, COVID-19, and the future perspective for the development of much more advanced and potent wearable biosensors have been highlighted. The final section highlights unmet difficulties and gaps in wearable sensors in personalized therapy. © 2022 Wiley-VCH GmbH.

12.
Advanced Electronic Materials ; 2022.
Article in English | Scopus | ID: covidwho-1708957

ABSTRACT

Sub-zero temperature sensors (SZTSs) have potential applications in safely storing COVID-19 vaccines. Herein, an SZTS based on laser-induced carbonization (LIC) achieved by a nanosecond infrared laser with a wavelength of 1064 nm is reported. Direct laser writing is adopted for laser-induced carbon in Kapton polyimide sheets with a thickness of 125 µm. The sensor exhibits a good linear change in resistance to sub-zero temperatures ranging from 0 to −150 °C, where the coefficient of determination adjusted R-square (R2) value is 0.99238, which indicates a good linear fit. The sensor exhibits a stable static response at all temperatures over time. The dynamic responses by controlling the liquid nitrogen gas and placing an ice cube on the sensor are also measured to validate the sensor. Notably, the electrical performance of the sensor remains stable even after 15 h. The sensor response of the LIC sample validates the 3D variable range-hopping charge transport mechanism, governed by the Mott equation with a good linear fit, which is mainly owing to disorder in its structure. LIC-based SZTSs can enable sensors that are ultra-fast to fabricate, roll-to-roll processable, economical, and more significantly, can be interfaced with flexible printed circuit boards without any additional interfacing. © 2022 Wiley-VCH GmbH

13.
5th International Conference on Nanotechnologies and Biomedical Engineering, ICNBME 2021 ; 87:382-389, 2022.
Article in English | Scopus | ID: covidwho-1627067

ABSTRACT

The paper proposes a new device for remote healthcare. This device is intended for elderly patients with cardiovascular disease who are living alone. The advantage of the device is that it can be used 24/7. The device has simple and understandable interface. The design of the device is based on two modern technologies, they are modern infocommunication technologies of LTE networks and technologies of flexible electronics. Also, this device can be used for remote healthcare during the COVID-19 pandemic. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

14.
Micromachines (Basel) ; 12(12)2021 Nov 27.
Article in English | MEDLINE | ID: covidwho-1542671

ABSTRACT

With the rising demand for wearable, multifunctional, and flexible electronics, plenty of efforts aiming at wearable devices have been devoted to designing sensors with greater efficiency, wide environment tolerance, and good sustainability. Herein, a thin film of double-network ionic hydrogel with a solution replacement treatment method is fabricated, which not only possesses excellent stretchability (>1100%) and good transparency (>80%), but also maintains a wide application temperature range (-10~40 °C). Moreover, the hydrogel membrane further acts as both the flexible electrode and a triboelectric layer, with a larger friction area achieved through a micro-structure pattern method. Combining this with a corona-charged fluorinated ethylene propylene (FEP) film, an electret/hydrogel-based tactile sensor (EHTS) is designed and fabricated. The output performance of the EHTS is effectively boosted by 156.3% through the hybrid of triboelectric and electrostatic effects, which achieves the open-circuit peak voltage of 12.5 V, short-circuit current of 0.5 µA, and considerable power of 4.3 µW respectively, with a mentionable size of 10 mm × 10 mm × 0.9 mm. The EHTS also demonstrates a stable output characteristic within a wide range of temperature tolerance from -10 to approximately 40 °C and can be further integrated into a mask for human breath monitoring, which could provide for a reliable healthcare service during the COVID-19 pandemic. In general, the EHTS shows excellent potential in the fields of healthcare devices and wearable electronics.

15.
ACS Sens ; 6(8): 2787-2801, 2021 08 27.
Article in English | MEDLINE | ID: covidwho-1397834

ABSTRACT

Skin-interfaced wearable systems with integrated colorimetric assays, microfluidic channels, and electrochemical sensors offer powerful capabilities for noninvasive, real-time sweat analysis. This Perspective details recent progress in the development and translation of novel wearable sensors for personalized assessment of sweat dynamics and biomarkers, with precise sampling and real-time analysis. Sensor accuracy, system ruggedness, and large-scale deployment in remote environments represent key opportunity areas, enabling broad deployment in the context of field studies, clinical trials, and recent commercialization. On-body measurements in these contexts show good agreement compared to conventional laboratory-based sweat analysis approaches. These device demonstrations highlight the utility of biochemical sensing platforms for personalized assessment of performance, wellness, and health across a broad range of applications.


Subject(s)
Sweat , Wearable Electronic Devices , Microfluidics , Skin
16.
Biosens Bioelectron ; 172: 112750, 2021 Jan 15.
Article in English | MEDLINE | ID: covidwho-893621

ABSTRACT

Tremendous research and commercialization efforts around the world are focused on developing novel wearable electrochemical biosensors that can noninvasively and continuously screen for biochemical markers in body fluids for the prognosis, diagnosis and management of diseases, as well as the monitoring of fitness. Researchers in North America are leading the development of innovative wearable platforms that can comfortably comply to the human body and efficiently sample fluids such as sweat, interstitial fluids, tear and saliva for the electrochemical detection of biomarkers through various sensing approaches such as potentiometric ion selective electrodes and amperometric enzymatic sensors. We start this review with a historical timeline overviewing the major milestones in the development of wearable electrochemical sensors by North American institutions. We then describe how such research efforts have led to pioneering developments and are driving the advancement and commercialization of wearable electrochemical sensors: from minimally invasive continuous glucose monitors for chronic disease management to non-invasive sweat electrolyte sensors for dehydration monitoring in fitness applications. While many countries across the globe have contributed significantly to this rapidly emerging field, their contributions are beyond the scope of this review. Furthermore, we share our perspective on the promising future of wearable electrochemical sensors in applications spanning from remote and personalized healthcare to wellness.


Subject(s)
Biosensing Techniques/instrumentation , COVID-19 Testing/instrumentation , COVID-19/diagnosis , Wearable Electronic Devices , Biomarkers/analysis , Biosensing Techniques/history , Biosensing Techniques/trends , Blood Glucose/analysis , Blood Glucose Self-Monitoring/instrumentation , COVID-19 Testing/trends , Electrochemical Techniques/history , Electrochemical Techniques/instrumentation , Epidermis/chemistry , Equipment Design/history , Extracellular Fluid/chemistry , History, 21st Century , Humans , North America , Potentiometry/instrumentation , Saliva/chemistry , Sweat/chemistry , Tears/chemistry , Wearable Electronic Devices/history , Wearable Electronic Devices/trends
SELECTION OF CITATIONS
SEARCH DETAIL